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SUMMARY

The flow through a channel partially filled with fibrous porous medium was analyzed to investigate the
interfacial boundary conditions. The fibrous medium was modeled as a periodic array of circular cylinders,
in a hexagonal arrangement, using the boundary element method. The area and volume average methods
were applied to relate the pore scale to the representative elementary volume scale. The permeability of the
modeled fibrous medium was calculated from the Darcy’s law with the volume-averaged Darcy velocity.
The slip coefficient, interfacial velocity, effective viscosity and shear jump coefficients at the interface
were obtained with the averaged velocities at various permeabilities or Darcy numbers. Copyright q 2008
John Wiley & Sons, Ltd.
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1. INTRODUCTION

Flow past a fibrous porous medium has interesting engineering applications, one of which is the
swirling flow around porous scaffolds in bioreactors. To analyze flow with a porous medium, it
is needed to couple the flow equations of the fluid and porous regions by using the interfacial
boundary conditions. The interfacial conditions will also influence the heat and mass transfer across
the interface.

To investigate the interfacial boundary conditions, simple models of flow through a channel
partially filled with a porous medium have been considered. Most previous studies have been based
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on the representative elementary volume (REV) scale approach as modeling of a general porous
pore scale structure is complex. However, for fibrous porous medium there were a few simplified
models using a periodic array of cylinders. In such a flow model the permeability of the fibrous
medium could be readily varied by the diameter of the cylinders or its spacing.

1.1. Permeability of porous medium

For the porous medium, an important parameter is permeability. Theoretical and numerical predic-
tions of permeability have been made based on of approximations of the pore structure. Kozeny
[1] approximated the porous medium by tortuous capillaries to develop an expression for the
permeability. In the Carman–Kozeny model [2], a hydraulic diameter is defined from the specific
surface area and porosity of the packed bed of particles. By applying the Poiseuille equation, the
permeability is obtained in terms of the particle diameter, porosity and a Carman–Kozeny constant.
The Carman–Kozeny model has been commonly used for granular porous media.

For fibrous media, due to its anisotropy, it is more appropriate to model them by arrays of
cylinders. The permeability is obtained from the drag resistance across the cylinders. Two extreme
cases were considered to obtain a closed-form solution for the whole range of porosity: closed
packed and widely spaced cylinders.

The lubrication theory by Keller [3] is used for low porosities when the cylinders are closely
packed. The pressure drop over the small gap between cylinders can be calculated analytically to
give the permeability of the array [4]:
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where d is the cylinder diameter, K is the permeability of the porous medium and ln is the ratio
of half the center spacing divided by the cylinder radius and can be expressed by the volume
fraction as:

l2n = 4

�
v f

The unit cell model is used for high porosities when the cylinders are widely spaced. It assumes
that the cylinders are spaced far away so that the region can be divided into independent cells.
Thus, the arrangement of the fibers has no effect on the solution. Typically, a circular cell is
adopted with the cylinder located in the centre, whose radius depends on the porosity. From the
drag on the cylinder the permeability can be obtained [4]:
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where le is the ratio of the cylinder radius to the cell radius and is related to volume fraction of
the porous medium by:

l2e = 1

v f

Different mathematical treatments have been used in the cell model based on the Stokes flow.
For example, there are the free-surface models of Happel [5] with zero drag force and Kuwabara
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[6] with vorticity-free boundary condition. There are also methods using Fourier series to calculate
the drag force of the cylinder in the cell model, for example those of Hasimoto [7] and Sangani
and Acrivos [8, 9]. The method of singularities was used by Lord Rayleigh [10] and Drummond
and Tahir [11]. Wang [12–14] used the eigenfunction expansion method.

In addition to methods for the extreme cases, there is a hybrid model of Bruschke and Advani
[15], which attempts to predict the permeability over the full porosity range. The approach combines
functions from both the lubrication and the cell models. Weighting functions, which depend on
the porosity, are used to make the solution tend asymptotically to the extreme cases of lubri-
cation or cell models. The asymptotic model gives a smooth transition from lubrication to cell
model, which covers the middle range of porosity. The asymptotic model is given in terms of the
porosity [15]

K

d2
= 1

16(1−�)

[
ln

(√
1

1−�

)
− 3

4
+(1−�)− (1−�)2

4

]
(3)

where � is the porosity.

1.2. Interfacial flow for homogeneous porous media

In many applications involving porous media, they are bounded on one side by a flowing fluid
layer. In most modeling, both fluid and porous media were assumed to be homogeneous. There
are primarily two ways to deal with the interfacial boundary conditions. One is the slip boundary
condition using slip coefficients [16, 17] and the other is no-slip boundary condition. Various flow
models of the slip and no-slip interface boundary conditions are summarized in Table I.

Beavers and Joseph [16] proposed the slip boundary condition and presented some experi-
mental results in which the channel size was varied, while keeping the pressure gradient constant.
Their results showed that the slip coefficient increased with increasing porosity. However, experi-
ments by Taylor [17] showed that for grooved plate, the slip coefficient increased with decreasing
permeability, probably because a grooved plate was different from a porous medium.

For the no-slip boundary condition, the velocity is assumed continuous at the interface. The flow
models can be classified into three major types according to the conditions of the velocity gradient
and shear stress at the interface. The first type assumes continuity of both velocity gradient and
shear stress [18, 19, 24]. The second type has non-continuity of velocity gradient but it assumes

Table I. Models of interface boundary conditions between a porous medium and a fluid layer.

Model Velocity Interface shear stress References

1 u+ �=u− du
dy

∣∣∣
y=0+ = �√

K
(uy=0−uD) [16, 17]

2 u+ =u− du
dy

∣∣∣− = du
dy

∣∣∣+ [18, 19]
3 u+ =u− �eff

du
dy

∣∣∣− =� du
dy

∣∣∣+ [20]
4 u+ =u− �

�
du
dy

∣∣∣−−� du
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∣∣∣+ =� �O√
K
uy=0 [21, 22]

5 u+ =u−� du
dy

∣∣∣−−� du
dy

∣∣∣+ =� �C√
K
uy=0 [23]
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continuity of shear stress, which is satisfied by using an effective viscosity for the porous medium
region [20]. The third type has non-continuity of both velocity gradient and shear stress [21–23, 25].

The non-continuity of shear stress condition at the interface was developed by Ochoa-Tapia and
Whitaker [21, 22] based on the non-local form of the volume averaging method. The function for
the jump coefficient indicates dependence on permeability and porosity and was complex to solve.
The coefficient was expected to be of order one, and may be either positive or negative. It was
noted that the parameter depends on

√
K/� where � is the thickness of the boundary region.

Goyeau et al. [25] introduced a heterogeneous continuously varying transition layer between the
homogeneous fluid and porous regions. The jump parameter was derived as an explicit function
of the effective properties of the transition layer. The parameter is also related to the variations of
the velocity in the transition layer, which is an unknown in the problem.

Recently, Chandesris and Jamet [23] presented a model in which the shear jump is built on
fluid stress rather than effective stress. A single volume average transport equation in the whole
domain was used. A heterogeneous continuously varying transition zone was introduced between
the homogeneous fluid and porous regions. The flow problem inside the heterogeneous transition
zone was solved using the method of matched asymptotic expansion. This solution enables the
derivation of the interfacial boundary conditions to be applied in a flow model in which the
homogeneous fluid and porous media are separated by a discontinuous interface. An explicit
function for the stress jump coefficient was obtained, which only depends on the characteristics of
the porous medium (porosity and permeability) in the transition zone. Subsequently, Chandesris
and Jamet [26] proposed an explicit relation between the jump parameters, the location of the
discontinuous interface, and the structure of the transition region. In a recent paper Valdes-Parada
et al. [27] derived a stress jump boundary condition, using the volume averaging method, which is
free of adjustable coefficients. The jump condition involves a mixed stress tensor which combines
the global and Brinkman stresses at the interface region.

1.3. Interfacial flow for fibrous porous media

There were a few studies giving solutions which describe the interfacial flow for fibrous porous
media. Most studies were modeled by flow in a channel partially filled with an array of cylinders.
Usually the slip velocity and effective viscosity were investigated.

Larson and Higdon [28] analyzed the shear flow near the surface of a porous medium, as modeled
by cylindrical array, using the boundary integral method. The slip velocity and dimensionless
effective viscosity were presented as functions of solid-volume fraction. The slip coefficient was
found to be sensitive to the definition of the interface, which they defined to be at the centre of
the outermost cylinder.

Sahraoui and Kaviany [29] also modeled the porous medium by cylindrical arrays and used
the finite difference method to study the interfacial boundary conditions. The slip coefficient was
presented in terms of Reynolds number and the distribution of the local effective viscosity was
given. Their results of slip coefficient agree well with the experiments of Beavers and Joseph [16].

James and Davis [30] used a singularity method to solve the flow field for cylindrical arrays of
large porosity (greater than 0.9). Their calculations showed that the external flow penetrated the
porous medium very little. The slip velocity was found to be about 0.4 of that predicted from the
Brinkman model (based on effective viscosity).

There is no information on the stress jump coefficient. As described above, this condition of
non-continuity of both velocity gradient and shear stress has been proposed in recent REV models
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of interfacial flow between fluid and porous media. However, the stress jump coefficient has not
been compared with experiment or direct pore scale modeling.

1.4. Scope and objectives

One of the main objectives was to consider the boundary conditions at the interface between
fluid layer and fibrous porous medium. The fibrous medium is modeled by an array of infinitely
long circular cylinders and the aspect ratio is not varied. Different porosity is varied by changing
the cylinder diameter. The slip coefficient, interfacial velocity, effective viscosity and stress jump
coefficients are determined.

2. NUMERICAL MODEL

2.1. Mathematical formulation

The physical configuration and the coordinate systems are shown in Figure 1(a). The interface
is at y=0, and the top and bottom walls are at y=±H . The porous medium is simulated as
hexagonal arrays of infinitely long circular cylinders, which is bounded at the top by free fluid and
at the bottom by a solid wall. The flow is transverse or perpendicular to the axis of cylinders. The
periodic boundary condition is applied at the inlet and outlet of the channel. The channel flow is
driven by a constant pressure gradient. The porosity was changed by changing the cylinder radius.
The interface position was chosen to be the plane, which is tangent to the outer edges of cylinders
in the first row [16, 29, 30].

The governing equation for the whole channel region is the steady Stokes equation:

�∇2u−∇ p=0 (4)

where � is the fluid viscosity, u is the velocity and p is the pressure.
The boundary element method (BEM) is used to solve the Stokes equation. The cylinders

are discretized into boundary elements of circular arcs. The boundary integral equations of two-
dimensional Stokes flow for velocity are given below [31, 32]:

u j (x0) = u∞
j (x0)− 1

4��

Np∑
q=1

∫
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D
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where the subscript Cq is the contour of qth particle, Np is the number of particles, n is the
unit normal vector pointing into the fluid, f Di is the disturbance component of the hydrodynamic
traction and G ji is the unidirectional periodic Green’s function for flow in a channel bounded by
two parallel planes. The polar coordinate integral method is used to avoid the integral singularity.

2.2. Volume averaging method and dimensionless parameters

It is crucial to recognize that what is being solved is the local momentum transport problem. To
relate the pore scale variations to the REV scale behavior, area and volume averages must be taken.
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Figure 1. (a) Channel partially filled with fibrous porous medium; (b) a unit cell showing the representative
elementary volume; and (c) an averaging volume near the interface.

For a channel flow partially filled with a porous medium modeled as an array of circular cylinders,
the two-dimensional array is spatially periodic in the x direction. For this type of theoretical
modeling, the averaging volume has been discussed in previous studies [28, 29, 33, 34].

For periodic array of cylinders, the length-scale constraint has been discussed by Whitaker
[33] and Kaviany [34]. The volume average methods are valid when the following length-scale
constraint is satisfied:

l1 ·l2�L2 (6)
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where L is the channel characteristic length and l1, l2 are the cell dimensions. In the present study,
the REV is shown in Figure 1(b), where the point (x, y) is at the cell center, l1 is the cell dimension
in x direction and l2 is the cell dimension in y direction.

A justification of the present representative region is necessary to establish whether the length
constraint is satisfied. In the present study there were 16 rows of cylinders in the y direction and
l1= l2/

√
3. Thus l1 ·l2/H2≈1/15

√
3=0.051. To enforce the length constraint more rigorously, a

larger number of rows of cylinders are needed, which would require larger computation resources.
For comparison, James and Davies [30] used 5–20 rows of cylinders in their study.

The interfacial velocity is defined from its area average along the interface [29]:

〈u〉A,y=0≡ 1

l1

∫ l1

0
u(x,0)dx (7)

where the bracket symbol 〈 〉A represents area average. The volume average velocity is defined
as [29]:

〈u〉V (y)≡ 1

l1 ·l2
∫ x+l1/2

x−l1/2

∫ y+l2/2

y−l2/2
u(x, y)dy dx (8)

where the bracket symbol 〈 〉V represents volume average, which is independent of x as the array
is periodic in the x direction.

To calculate the velocity gradients near the interface, the averaging volume must be carefully
chosen so that the velocity variations near the interface can be reflected accurately. Furthermore,
the averaging volume should ensure that the volume-averaged interfacial velocity is in agreement
with that of the area-averaged values. Sahraoui and Kaviany [29] proposed that for any point y
that is located between 0 and −l2/2, the averaging volume is taken as−2yl1 (see Figure 1(c); note
y is negative), and the volume-averaged velocity is defined as:

〈u〉V (y)≡ 1

−2yl1

∫ 0

−2y

∫ x+l1/2

x−l1/2
u(x, y′)dx dy′ (9)

The permeability in the porous region is calculated using Darcy’s law:

dP

dx
= �

K
uD (10)

where dP/dx is the pressure gradient, � is the fluid dynamic viscosity and uD=〈u〉V (y→−∞)

is the Darcy velocity, which is a volume-averaged velocity over a local REV positioned deep
into the porous medium. Noted that in the following parts, all the velocity u represents area- or
volume-averaged velocities.

The velocity, distance and permeability are non-dimensionalized as [35]:
U = u

uD
(11a)

Y = y

H
(11b)

Da= K

H2
(11c)

where H is the channel semi-width of flow region as shown in Figure 1(a). Da is Darcy number.

Copyright q 2008 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2009; 60:809–825
DOI: 10.1002/fld



816 H. X. BAI ET AL.

3. RESULTS AND DISCUSSION

3.1. Permeability of fibrous porous medium

There have been analytical studies of unbounded flow through infinite and semi-infinite lattices
of infinitely long cylinders [28, 29, 34, 36]. A numerical study on bounded flow has been given
by James and Davies [30]. The present numerical results of permeability are compared with the
previous studies.

Figure 2(a) and (b) shows the non-dimensional permeability K/d2. It increases exponentially
with increasing porosity, tending to infinitely a large value when the porosity is close to unity. A
large porosity is associated with a small cylinder diameter d and a large permeability K , so that
K/d2 becomes large.

The cell, lubrication and asymptotic models are shown in Figure 2(a) for comparison with
the present result. It is seen that the present results tend toward the cell model at high porosity
and toward the lubrication model at low porosity. The present result is consistent with the
assumptions of both models. The present result shows good agreement with the asymptotic
model.

The results are compared with the Carman–Kozeny model in Figure 2(b), which has a Carman–
Kozeny constant k. It is seen that with k from 0.2 to 17.9, the Carman–Kozeny model bounds
the present numerical results. The present results may be approximately fitted by the Carman–
Kozeny model with a constant k=1.5. However, note that the Carman–Kozeny constant varies
with porosity, though not so obvious in the present results.

Figure 2(c) shows the permeability K/A as a function of solid volume fraction c=1−� for
hexagonal array of circular cylinders, where A is the area of the unit cell as defined by Larson
and Higdon [28]. The comparison shows that the present results are in good agreement with those
of Larson and Higdon [28]. The agreement is better at high solid fraction. Note that Larson and
Higdon’s [28] model is for infinite array, but the present array is bounded by free fluid at the top
and solid wall at the bottom.

3.2. Volume-averaged velocity profiles

Figure 3(a) and (b) shows the velocity profile at two permeabilities. In Figure 3(a), different
element numbers are used to check the convergence. It is seen that 64 elements per cylinder are
sufficient. Also presented in Figure 3(b) is an enlarged figure of the domain used for calculations
of the velocity gradient near the interface.

The velocities are non-dimensionalized by the average Darcy velocity uD. Thus, the non-
dimensional velocity in the porous medium is near to unity. At larger permeability, the Darcy
velocity is larger, though not depicted by the non-dimensional plot. The maximum velocity in
the fluid layer is much larger than that in the porous medium, well above an order of magnitude
larger (see Figure 3(a) and (b)). In the REV scale results of Alazmi and Vafai [35] their maximum
velocities are 130–1300 times of the Darcy velocity. However their Darcy numbers are smaller,
from 10−3–10−4 compared with the present 7.3×10−3–10.1×10−3. In the present velocity profiles
(Figure 3(a) and (b)), the maximum velocity is greater at smaller permeability, which is consistent
with the velocity results of Alazmi and Vafai [35]. It can be explained that, with constant pressure
gradient, there is much more flow at the fluid side compared with that at the porous medium; the
porous flow is lower at smaller permeability.
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Figure 2. Permeability of porous media formed by cylinder arrays: (a) comparison with
cell, lubrication and asymptotic models; (b) comparison with the Carman–Konzeny model;

and (c) comparison with the Larson and Higdon study.
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Figure 3. Non-dimensional averaged velocity profile: (a) convergence study at different
element numbers; at K =2.93×10−2 or Da=7.3×10−3 and (b) an enlarged velocity

profile at interface; at K =4.30×10−2 or Da=10.1×10−3.

3.3. Interfacial boundary conditions

3.3.1. Slip boundary condition. The slip boundary condition has been used in the homogeneous
modeling of interface between fluid and porous media. The interfacial shear is related to the
interface velocity uy=0 at the interface by a slip coefficient �:

du

dy

∣∣∣∣
y=0+

= �√
K

(uy=0−uD) (12a)

Using the slip boundary condition, together with the no-slip boundary condition at the impermeable
wall, the velocity distribution in the fluid side may be found. The interfacial velocity and slip
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Figure 4. Slip coefficient versus Darcy number.
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= 1
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√
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(12b)

Figure 4 shows the slip coefficient � (calculated using Equation (12a)) at various Darcy numbers.
The slip coefficient varies between 0.4 and 8.4 and the average value is 5 over the present range
of Da.

In Beavers and Joseph [16] experiments, the slip coefficient varies from 0.1 to 4, as permeability
increases. It is difficult to make detailed comparison as Beavers and Joseph [16] specified pore
size and not Darcy number. It is interesting that their experimental slip coefficients and the present
results are of the same order even though the structures of the porous media were very different.
A numerical study on array of cylinders has been carried out by Sahraoui and Kaviany [29], and
the slip coefficient increases from 1.3 to 4.2 as porosity increases from 0.4 to 0.8. As compared
with their numerical results, the present results are of the same order.

The interfacial velocity at the top of the fibrous medium is presented in Figure 5. Also presented
is the prediction of interfacial velocity using Equation (12b), based on Darcy’s law with the slip
boundary condition. The slip coefficient (from Figure 4) was used. It is seen that, at large Darcy
number 0.05, the interfacial velocity is around two times lesser when compared with the present
results. The differences increase to around five times at low Darcy number 10−4. In the analytical
work of Vafai and Thiyagaraja [24], for Darcy number from 10−4 to 0.063, their interfacial velocity
results agreed with the hypothesis proposed by Beavers and Joseph [16] that the fluid side velocity
gradient at the interface is proportional to the slip velocity.

3.3.2. No shear jump boundary condition. In the no shear jump boundary condition, a shear term
is added to the Darcy’s law to account for velocity gradient at the interface. The velocity there
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is assumed continuous and so is the shear stress through the use of an effective viscosity �eff,
assumed uniform in the porous medium, where

�eff
du

dy

∣∣∣∣− =�
du

dy

∣∣∣∣+ (13)

The velocity gradients at the fluid and porous sides are shown in Figure 6; the gradients are
non-continuous at the interface as expected. When Darcy number varies from 4×10−6 to 3×10−3,
the velocity gradient on the fluid side decreases very slightly, but that on the porous side increases
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slightly. When Darcy number is larger than 3×10−3, both the fluid side and the porous side velocity
gradients decrease significantly. From the ratio of velocity gradients at the fluid and porous media
sides of the interface, the effective viscosity was found and presented in Figure 7 as a function of
Darcy number. The dimensionless effective viscosity �eff/� f varies from around 3.1 to 5 for the
present range of Darcy number.

In the experiments of Gilver and Altobelli [37], �eff/� f was found to be between 5 and 9 at low
Reynolds number for large porosity �=0.972. The present result is of the same order compared
with the experiment results. However, note that the experimental result is for flow normal to a
porous plug, which is different from the present parallel flow past the interface.

Sahraoui and Kaviany [29] have carried out numerical study on flow near the interface of a
square array of cylinders and �eff/� f was estimated to vary from 0.7 to 2 when porosity increases
from about 0.5 to 0.8. In the numerical study of shear flow past a hexagonal cylindrical array by
Larson and Higdon [28], �eff/� f varies from 0.9 to 3 when porosity increases from 0.1 to 1.0. As
compared with the previous numerical studies, the present dimensionless effective viscosity is of
the same order.

3.3.3. Shear jump boundary condition. Like the above no shear jump boundary condition, the
porous medium is modeled by the Darcy–Brinkman equation. The velocity at the interface is
continuous. However, there is a shear stress jump at the interface given by:

�

�

du

dy

∣∣∣∣−−�
du

dy

∣∣∣∣+ =�0
�√
K
uy=0 (14a)

where �0 is the shear jump coefficient.
The above stress jump boundary condition was derived by Ochoa-Tapia and Whitaker [21] based

on the non-local form of the volume-averaged momentum equation. Note that this stress jump
equation has an effective viscosity term �/� for the porous medium.
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Figure 8. Shear jump coefficient versus Darcy number: (a) �0 in Ochoa-Tapia and Whitaker’s
model and (b) �C in Chandesris and Jamet’s model.

The above equation is applied to the present numerical data of porosity, velocity gradients,
permeability and interfacial velocity to determine the shear jump coefficient. The shear jump
coefficient �0 is presented in Figure 8(a) as a function of Darcy number. The shear jump coefficient
is seen to vary from around 0 to −4.8 for the present range of Darcy numbers.

In the study of Ochoa-Tapia and Whitaker [22], �0 was estimated to range from 1.5 to −1.0.
This range of �0 was obtained by adjusting it, so that their fractional excess flow rate due to porous
medium showed a good fit with the experimental data of Beavers and Joseph [16]. The present
results of �0 are of the same order as Ochoa-Tapia and Whitaker [22]. However, it is difficult to
make further comparison as their porosity was arbitrarily specified as 0.4. The porous media of
Beavers and Joseph [16] are made of foam metal (lattice type) and aloxite (granular type) whose

Copyright q 2008 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2009; 60:809–825
DOI: 10.1002/fld



BOUNDARY CONDITIONS BETWEEN FLUID LAYER AND FIBROUS MEDIUM 823

pore sizes ranged from 0.013 to 0.045 in. Though the present porous medium structure is very
different from that of Beavers and Joseph [16], it is interesting that the shear jump coefficients are
of the same order.

Another model of shear stress jump at the interface is that of Chandesris and Jamet [23],
given by:

�
du

dy

∣∣∣∣−−�
du

dy

∣∣∣∣+ =�C
�√
K
uy=0 (14b)

where �C is the shear jump coefficient. Note that this stress jump equation has fluid viscosity
term � for the porous medium unlike Equation (14a). The above equation was applied to the present
numerical data of porosity, velocity gradients, permeability and interfacial velocity to determine
the shear jump coefficient �C.

The shear jump coefficient is presented in Figure 8(b). The jump coefficient varies from around
−0.5 to −4.8 for the present range of Darcy numbers. In the study of Chandesris and Jamet [23],
�C was found to be between 4.28 and −0.637 in order to obtain good fit with Beavers and Joseph’s
[16] experimental data of the fractional increase in flow rate. The present coefficient shows similar
trend as that of Chandesris and Jamet’s [23] in which the coefficient decreases with increasing
porosity. However, the present �C is always of negative value, which is plausible if the velocity
gradient of the porous side is always smaller than that of the fluid side.

4. CONCLUSIONS

A numerical study, using the BEM, was carried out on the flow through a channel partially filled
with fibrous porous medium, which was modeled as a periodic, hexagonal array of cylinders. The
flow is transverse to the cylinders and the interfacial boundary conditions were analyzed. The
slip coefficient varies from around 0.4 to 8.4 for the present range of permeability. Using the slip
coefficients, the slip boundary model gives an interfacial velocity, which is less than the present
results by around 2–5 times. The effective viscosity varies from around 3.1 to 5 for the present
permeability. The stress jump coefficient is of order one, which is consistent with previous literature.
However, it is interesting that the present jump coefficients are negative in value. The present results
may give some indication of the range of values of the coefficients that are needed as empirical
inputs to the various models of interfacial boundary conditions. The interfacial conditions noted
from the present pore scale modeling may be of interest to REV modeling of flow and heat transfer
condition at the interface between fluid and porous media.
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